Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus

نویسندگان

  • Erwan Faou
  • Ludwig Gauckler
  • Christian Lubich
چکیده

It is shown that plane wave solutions to the cubic nonlinear Schrödinger equation on a torus behave orbitally stable under generic perturbations of the initial data that are small in a high-order Sobolev norm, over long times that extend to arbitrary negative powers of the smallness parameter. The perturbation stays small in the same Sobolev norm over such long times. The proof uses a Hamiltonian reduction and transformation and, alternatively, Birkhoff normal forms or modulated Fourier expansions in time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence and Uniqueness Theory for the Fractional Schrödinger Equation on the Torus

We study the Cauchy problem for the 1-d periodic fractional Schrödinger equation with cubic nonlinearity. In particular we prove local well-posedness in Sobolev spaces, for solutions evolving from rough initial data. In addition we show the existence of global-in-time infinite energy solutions. Our tools include a new Strichartz estimate on the torus along with ideas that Bourgain developed in ...

متن کامل

Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation

We consider the cubic defocusing nonlinear Schrödinger equation in the two dimensional torus. Fix s > 1. Colliander, Keel, Staffilani, Tao and Takaoka proved in [CKS10] the existence of solutions with s-Sobolev norm growing in time. We establish the existence of solutions with polynomial time estimates. More exactly, there is c > 0 such that for any K ≫ 1 we find a solution u and a time T such ...

متن کامل

Smoothing for the Fractional Schrödinger Equation on the Torus and the Real Line

In this paper we study the cubic fractional nonlinear Schrödinger equation (NLS) on the torus and on the real line. Combining the normal form and the restricted norm methods we prove that the nonlinear part of the solution is smoother than the initial data. Our method applies to both focusing and defocusing nonlinearities. In the case of full dispersion (NLS) and on the torus, the gain is a ful...

متن کامل

A Priori Bounds and Weak Solutions for the Nonlinear Schrödinger Equation in Sobolev Spaces of Negative Order

Solutions to the Cauchy problem for the one-dimensional cubic nonlinear Schrödinger equation on the real line are studied in Sobolev spaces H, for s negative but close to 0. For smooth solutions there is an a priori upper bound for the H norm of the solution, in terms of the H norm of the datum, for arbitrarily large data, for sufficiently short time. Weak solutions are constructed for arbitrar...

متن کامل

Nonuniqueness of Weak Solutions of the Nonlinear Schrödinger Equation

Generalized solutions of the Cauchy problem for the one-dimensional periodic nonlinear Schrödinger equation, with cubic or quadratic nonlinearities, are not unique. For any s < 0 there exist nonzero generalized solutions varying continuously in the Sobolev space H, with identically vanishing initial data.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012